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A N I S O T R O P I C  D I S C  L O A D E D  B Y  A L A Y E R  O F  F O R C E S  

IN A N  U N B O U N D E D  E L A S T I C  M E D I U M  

G. N .  Mirenkova  and E. G. Sosn ina  UDC 539.219.1 

We consider an anisotropic ellipsoidal disc in an unbounded isotropic elastic medium under the influence 
of a uniform stress field ~ .  In addition, the disc surface is loaded by a layer of bulk forces qa = p ~ n ~  (pa~ 
is a constant symmetric tensor, n~ are the components of a unit normal vector n to the disc surface). By a 
disc is meant an ellipsoid one of whose axes is much smaller than the other two. 

It has been shown in [1] that the stresses cra~(n) on the surface of an anisotropic ellipsoidal inclusion 
are of the form 

a(n) = B(n)r  +, r = B - l ( o ' 0  + CO Ap),  

B(n)  = co + co K(n)(c  - co), (1) 

where r are the strains inside the inclusion; co and c are the tensors of elastic constants of the ambient 
medium and the inclusion, respectively; K(n)  is the Fourier image of the second derivative of the Green's 
tensor of the external homogeneous medium; B -1 is the tensor inverse to B; A = (K(n)) and B = (B(n)) 
are the average values of the tensors I ((n)  and B(n) over the ellipsoid. 

First we solve the problem on strain distribution inside the disc. Let us write the formula for r 

r = B- lao  + B-lco Ap  = B-lao + R p  = r + r (2) 

Here r is the strain due to the action of the external field ao; r is the strain due to the load distributed 
over the surface. It is evident from (2) that calculation of the strains inside the disc is reduced to that of the 
tensors B -1 and R. 

Let the half-axes of the ellipsoid al, a2, and a3 satisfy the relationship for a3 ,(( a2 ~ hi. The case 
a2 << al corresponds to a prolate disc; a2 ,-~ hi, to a disc approximating a circle; and al = a2, to a circular 
disc. Let us introduce a small (but finite) parameter ~ = a3/a2. Then, for a constant tensor A, the following 
expansion holds: 

27r 
a f K(~2) d(p 

A = Ao + O(~), Ao = ~ J cos2 ~2 + a2 sin2 r a = a2/al. (3) 
0 

One can show that for an arbitrary anisotropic medium K(~v) is a constant tensor, with 

g ( ~ )  = It'(n) n3=l ,  n l = n 2 =  0. 

Taking into account that 

2~r 

= 1,  
2~r _ cos2 ~2 + a 2 sin2 ~2 

0 
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we find 

A0 = K(n)  ha=l, 
n l = n 2 = 0  

Consequently, A0 is a constant tensor independent of the inclusion geometry. 
For an isotropic external medium, from the explicit formulas for K(n)  [2] it follows that with n3 = 1 

only the components K~z,,3(n) (a = 1, 2, 3) are nonzero. For the components of the tensor A0 we find 

0 1 - 2 v0 0 0 1 (4)  
A3333 = 2#0(1 - v0)' A1313 = A2323 = 4#0'  

where #0 and v0 are the shear modulus and Poisson's coefficient of an isotropic external medium. 
Applying expansion (3) for A, we obtain the appropriate expansion with respect to the small parameter 

of the constant tensor B: 

B =/30 + O(~). 

The leading term of the expansion B0 is the constant tetravalent tensor nonsymmetric with respect to 
permutation of pairs of indices 

B0 = co A0 (c - co). 

Hence and from the properties of the tensor A0 it follows that for an arbitrary anisotropic medium 
the tensor B0 has the same value for prolate, circular, and close to circular discs. One can show that B0 is a 
nondegenerate tensor. Therefore, to calculate the tensors B -1 and R let us restrict ourselves to the leading 
terms of the expansion with respect to the small parameter ~. 

Assume the disc to be orthotropic and the axes of elastic symmetry to be parallel to the ellipsoid axes. 
Then the tensor c azx '  has nine nonzero components which will be denoted as 

c a a # ~ = c ~ #  (a, f l = 1 , 2 , 3 ) ,  

C 2323 = C44~ C 1313 = C55, C 1212 - -  C66. 

For the components of the tensor Bo 1, we obtain 

- i  - i  1 - I  - 1  - I  - I  V0 
B l 1 1 1  -~ B2222 = ~00 '  B l 1 2 2  -~ B2211 = B I 1 3 3  - B2233 - E o '  

-1 1 [1 + v0(cl3 + C23). 1 --1 1 --1 1 
= - - .  J '  B1313 = 4--~55' B2323 = (5 )  B3333 c33 Z o  4c44 ' 

--1 V0C23 - -  C13 - 1  V0Cl3 - -  C23 B ~ 1 2  = l 
B3311 - c33 E0 ' B3322 - c33 E0 ' 4#0 

(E0 is Young's modulus of the isotropic external medium). 
The strain components e + are obtained by contracting the tensors B -1 and a0. Let us define the strains 

r +. The leading term of the expansion of the tensor R from (2) is 

Ro = Bo 1 co Ao. 

0 0 0 It follows from (4) that the components Ra#11 = R~#22 = R~#12 = 0 (a, fl = 1,2, 3). This implies that 
the forces applied to the surface pll,  p22, p12, which are parallel to the plane of the disc edge (n3 = 0), do not 
contribute to the leading terms of the expansion ~2 +. The remaining components of the tensor Ro are 

o o o 1 ,  o 1 1 
= = = - -  R1313 ---- ~2323  - -  �9 R3333 C33 4 C55 ' 4 C44 R1133 R2233 0, 0 

Hence it follows that the strains ~2 + have the form 

p33 p13 

(E2-I-) 33 = -  , (E2+)13 - , 
c33 2 c55 (6) 
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p23 + 
= , ( ~ 2 ) ~  = o (~ , /3  = 1 ,2) .  (62+)23 2 C44 

Thus, only the forces p33, p13, and p23 (normal to the edge plane of the disc) contribute to the leading 

terms for 62 +. 
From (2), (5), and (6) we determine the summary strain 6+: 

= 0 - , 6 + 3  = , 
6a. fl (0~,.~ = 1,2), gt3 O"13 -}- p13 0 .23 "4- p23 

2 c55 2 c44 

1 ~ 33 p33 0 0 
6+3 = --~3t0.0 + - c 1 3 6 u  - c 2 3 6 2 j .  

Here 6~ are the external strains connected with the stresses ao ~' by Hooke's law 0.o ~t' .~.~Z~o = ~0 ~ 
From the formulas for 6 + it is evident that the strains inside the orthotropic disc depend only on the 

elastic constants that characterize the elastic properties of the disc in the direction orthogonal to the edge 
plane. Let us write the stresses 0.~ inside the orthotropic disc as follows: 

0.~1 = ! [/k22 6~ 1 _ A12 6~2 + C13 (0.g3 + p33)1, 
C33 

s = 1[, , , , ,1602 - ,,, ,260 + c23 (s  + p33)], 
C33 

0.~_2 = __C66 0.012, (7+'~3 = 0.~,3 + p,,3 (~ = 1,2, 3), 
#0 

where Aa/~ is the cofactor of the element ca~ in the matrix of elastic constants Ilc~zII (~, z = 1,2, 3). 
One can show that the stresses a+ inside the orthotropic disc depend on seven elastic constants and 

do not depend on the shear modules c44 and c55 in the planes orthogonal to the edge plane of the disc. 
For the particular case of an is0tropic disc with shear modulus # and Poisson's coefficient u we have 

1 [2# (6101 + u~02 ) + u(0.033 + p33) 1, 0.~}-- 1 - - v  

0.~2 = 1 _ L _ [ 2 . ( 6 %  + ~ ' 4 , ) +  ~(0.]3 + p33)1 ' 
1 - - v  

0.~2 = A0.12 0.$3 0.~3 + p~3 (~ 1, 2, 3). 
/-tO O, ---- = 

Before calculating the stresses 0.(n) at the outer surface of the disc from (1), we find the values 0.~/~ at 
its vertices A(al, 0, 0), B(0, a2, 0), C(0, 0, a3). For an orthotropic disc at the vertex A 

0.a'(A) = 0.~1 (~ = 1,2,3), 0.23(A) ' ]-J_oo (0.23 +p23), 
c44 

1 
0.22t~ J/A~ _ 1 -  

1 
0.33,A~ = 1 -  

Expressions for 0.aZ(B) are derived by 
At the vertex C 

- -  [2 ~0 (~~ + ~0 6+3) + ~o 0.})], 
I/0 

~ [2#0 (e+a + u0 6~ + voa~. 1 ]. 
v0 

changing the indices 1 +-+ 2, 4 --+ 5 in both sides of the formulas. 

0."~(c) = 0.~'~ + v"3 (~ = 1,2,3), 0.1~(c) = 0.~?, 

vO p33, 0.11(C) - 1 - 1 u----~ [2~0  (gO1 "~" /20s -[- "UO (Cr33 + p33)1 = 0.11 -{- I -- V 0 

uO p33 a22(C) = 1 - 1 u0 [2#~ (62~ "4" b'~ 8~1) +/"~ (0.33 + p33)] = a22 + 1 - u0 " 
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For an isotropic disc the structure of the formulas for stresses at the disc vertices is the same as for an 
orthotropic disc. 

It is more convenient to study the stresses at the disc surface using the local coordinate system e~ 
related to the normal to the surface so that the axis e3t is directed to the normal n, while the axes e 1, and e2, 

are in the plane tangential to the surface, with the local stress e l f ( n )  being directed perpendicular to the 

section plane in the "vertical" sections nl = 0 and n2 -- 0, and 0.2'2'(n), along the section contour, and in the 
section n3 = 0, vice versa. We denote local stresses by aa#(n) (in distinction to 0.a#(n) in a rigid coordinate 
system). Since the general expressions for aa#(n) are cumbersome, we present them only for the main sections 
of the disc. In the section nl = 0 (n 2 + n 2 = 1) 

(c r23 2 + 0.11(n) =n2o'11(C)-}-n10.11(B) + 2vO n2rt3 , + -- l ~0923), 

0.33(n) 2 : 2  p33) n3( o +p23), = n 2 a  + + n 2 ( n o  a3+ + 2 n 2  

0.12(n) = n30.012 2 n 2 # 0 ~  + (7) 
- -  13' 

= + 

a23(n) = n2 n3 [a~. 2 - (no 33 + p33)] + (n23 _ n22)(a023 + p23). 

Expressions for ~ra#(n) in the section n2 = 0 are obtained by changing 1 *-~ 2, 4 ~ 5, B --* A on the 
right-hand sides of the above formulas, and in section n3 = 0 they have the form 

0.11(n) = 0. 2(A) + n 0.11(B) + 2nl  (,00.12 - 2 t0 

0.22(n) = nl 2 0.33(A) + n22 0.33(B) + 2 vo nl n2 (a 12 - 2 tO el+2), 

0.33 ( n )  2 11 o.22 o.12, = n I 0.+ + n 2 + 2 n l n 2  

0.12(n) ---- 2 #0 (rtl  g2+3 -- rt2 gl+3), (8) 

0.13(n)  1 5(0.11 45)  + 5 , .  = -- _ n l ) 0 .  + , 

From the formulas derived it is obvious that the stresses at the disc surface calculated up to the leading 
term of the expansion with respect to the small geometric parameter depend on all components of the external 
field 0.0 and on the forces p~3 ((x = 1,2,3) applied to the plane and normal to the plane of the disc edge 
only. The qualitative picture of the behavior of the stresses affected by the external field 0.o and the total 
field (0.0 + p) only is the same: under the effect of tensile stresses 0.~a + p~a (a = 1, 2, 3) the maximum of 

the stresses ann(n) is achieved at the disc vertices; under the action of shear stresses 0 .~  + p~# (a # fl) it is 
achieved in the vicinity of the vertices. 

The shear components of the stresses a ~ ( n )  (a #/3) can also undergo displacement of the maximum 
from the vertices under the action of tensile stresses only. 

It should be noted that for the case of an isotropic external medium the structure of formulas (7) and 
(8) for the stresses on the disc surface does not depend on the anisotropy of the inclusion: the expressions 
for stresses in orthotropic and isotropic discs are identical to the appropriate ~+ and a +. Anisotropy of the 
external medium introduces significant changes in the formulas for stresses. 
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